Aller au contenu principal
R

Ray Serve

Scalable model serving library

A scalable model serving library for building online inference APIs. Framework-agnostic, designed for deploying machine learning models alongside business logic.

33K
GitHub Stars
none
TypeScript
steep
Learning Curve
4.0
DX Score

Tarification

Model
free
Offre Gratuite
Apache 2.0 licensed, fully open source

Fonctionnalités

  • Framework-agnostic
  • Model composition
  • Dynamic scaling
  • Request batching
  • FastAPI integration
  • LLM optimizations
  • Response streaming
  • Multi-model serving
  • GPU support

Avantages

  • + Works with any ML framework
  • + Excellent for LLM serving
  • + Scales automatically
  • + Great Python integration
  • + Active development

Inconvénients

  • - Complex for simple cases
  • - Ray cluster overhead
  • - Learning curve
  • - Resource intensive

Idéal Pour

enterprise startup

Alternatives

ml-serving inference llm scalable ray