R
Ray Serve
Scalable model serving library
A scalable model serving library for building online inference APIs. Framework-agnostic, designed for deploying machine learning models alongside business logic.
33K
GitHub Stars
none
TypeScript
steep
Learning Curve
4.0
DX Score
Precios
Model
free
Plan Gratuito
Apache 2.0 licensed, fully open source
Características
- ✓ Framework-agnostic
- ✓ Model composition
- ✓ Dynamic scaling
- ✓ Request batching
- ✓ FastAPI integration
- ✓ LLM optimizations
- ✓ Response streaming
- ✓ Multi-model serving
- ✓ GPU support
Ventajas
- + Works with any ML framework
- + Excellent for LLM serving
- + Scales automatically
- + Great Python integration
- + Active development
Desventajas
- - Complex for simple cases
- - Ray cluster overhead
- - Learning curve
- - Resource intensive
Mejor Para
enterprise startup
ml-serving inference llm scalable ray